MATH 141: Midterm 1
Name:

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

	Problem	Score Points
	1	10
	2	10
	3	10
	4	10
	5 6	10 10 10
- my worle		70
or my thoughts	while I	worle

1. If

$$
f(x)=x^{2}-x \quad g(x)=3 x^{2}-x+1 \quad h(x)=\sin (x) \quad j(x)=2^{x}
$$

Evaluate, expand, and/or simplify the following:
(a) $h\left(\frac{\pi}{6}\right)=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$

(b)

$$
\begin{aligned}
j(1) \cdot h(0) & =2^{\prime} \cdot \sin (0) \\
& =2 \cdot 0 \\
& =0
\end{aligned}
$$

(c) $f(x) \cdot g(x)$
two three Dent forget parenthesis when multiplying into ≥ 2 terms!
tern term.

$$
f(x) \cdot g(x)=\left(\begin{array}{c}
\left.x^{2}-x\right) \\
\left(3 x^{2}-x+1\right) \\
\operatorname{los} \\
x^{2}\left(3 x^{2}-x+1\right)+\underbrace{(-x)}\left(3 x^{2}-x+1\right) \\
\pi
\end{array}\right.
$$

(d) $f(x+h)-f(x)$
dist law

$$
=3 x^{4}-x^{3}+x^{2}-3 x^{3}+x^{2}-x
$$

$$
=3 x^{4}-4 x^{3}+2 x^{2}-x
$$

Since $f(x)=x^{2}-x$

$$
\begin{aligned}
& \text { look! } x \text { th fIreplaces the " } x \text { " visually! Now do it! } \\
& f(x+h)-f(x)=\frac{(x+h)^{2}-(x+h)}{f(x+h)}-\underbrace{\left(x^{2}-x\right)}_{f(x)} \text { (common mistake: } \\
& \underset{\text { list law }}{\text { expand, }} x^{2}+2 x h+h^{2}-x-h-x^{2}+x \\
& =2 \times h+h^{2}-h \\
& \text { GiF }=h(2 x+h-1)^{2}
\end{aligned}
$$

2. Short answer questions:
(a) Explain in English the intuition (not the definition) behind the symbols $\lim _{x \rightarrow a} f(x)=L$. $f(x)$ is the height of the function at an x-value.

So as the x-values approach a but never a itself, the heights $f(x)$ will get closer and closer to the long th of L.
(b) True or false: We can simplify

$$
\frac{3(x-2)^{2}(x+3)}{5 x(x-3)^{2}(x-2)-4(x+2)(x-3)^{2}}
$$

by crossing out the $x+3$.
No. $(x+3)$ is nut a factor in the global context of both the numerates and denominator. The context in which it's a factor is underlined in purple above.
(c) If $f(x)=x-x^{2}$, evaluate $f(x+h)$ and fully expand + simplify.

$$
f(x+h)=(x+h)-(x+h)^{2}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Compare the notations: }=x+h-\left(x^{2}+2 x h+h^{2}\right) \stackrel{\text { list }}{=} x+h-x^{2}-2 x h-h^{2} \\
f(x+h)
\end{array} \\
& f(x) \\
& \begin{array}{l}
\text { ole how } x+\text { h } \\
\text { tuck the place of }
\end{array} \\
& \text { (d) If } F(x)=\sin ^{3}\left(x^{2}\right) \text { find three functions } f, g, h \text { where } f \circ g \circ h=F \text {. } \\
& \begin{array}{l}
f(x)=x^{3} \\
g(x)=\sin (x) \\
h(x)=x^{2}
\end{array} \\
& \text { Verifying'. } \\
& (f \circ g \circ h)(x)=f(g(h(x))) \\
& =f\left(\underline{g\left(x^{2}\right)}\right) \quad \begin{array}{l}
x^{2} \text { takes the place } \\
\text { of } x \text { in } g(x)
\end{array} \\
& =f\left(\frac{1}{\sin \left(x^{2}\right)}\right) \quad \sin \left(x^{2}\right) \text { replaces } x \text { in } \\
& =\left(\sin \left(x^{2}\right)\right)^{3}=\sin ^{3}\left(x^{2}\right)=F(x)
\end{aligned}
$$

Common mistake H : plugging in 2 into $-x^{2}+1$ is 2 negative

$$
\begin{aligned}
& \wedge \begin{aligned}
-2^{2}+1 & =(-1) \cdot 2^{2}+1 \quad l_{\text {aw }} \neq 1 . \\
& =-4+1
\end{aligned} \\
& \begin{aligned}
-2^{2}+1 & =(-1) \cdot 2+1 \quad \text { law } \# 1 . \\
& =-4+1
\end{aligned} \\
& \text { Common mistake \# } 2 \text { : }
\end{aligned}
$$

3. Suppose
(a) Sketch a graph of $f(x)$.

x	$f(x)$
-1	-1
0	0
1	$-1^{2}+1=0$
2	$-2^{2}+1=-3$

 forgot to take this branch on the int eon $(0,1)$. Which mons this part was furgatton.
(b) What is $f(1)$?

$$
f(1)=-1^{2}+1 \underset{\text { law }}{=}(-1) \cdot 1^{2}+1=-1+1
$$

(c) Does $\lim _{x \rightarrow 1} f(x)$ exist? If it does, find the limit. If not, explain why.

Wo, because looking@ the graph above:

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x=\square \\
& \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}-x^{2}+1=\square \\
& \text { Since } \lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x), \lim _{4 \rightarrow 1} f(x) \quad D N E
\end{aligned}
$$

4. Perform the given instruction. Remember to use the relevant laws/properties and fully simplify.
(a) Expand and simplify: $\frac{\sqrt[3(x+h)^{2}]{ }-1-\left(3 x^{2}-1\right)}{h}$

$$
3(x+h)^{2} \neq(3 x+3 h)^{2}
$$

because $3(x+h)^{2}=3 \cdot(x+h) \cdot(x+h)$
You con only distribute the 3 to
3 multiplies into 3 terms. one factor of $(x+h)$.

$$
\begin{aligned}
& \frac{3(x+h)^{2}-1-\left(3 x^{2}-1\right)}{h} \frac{(A+B)^{2}}{h} \\
& \stackrel{\text { dist }}{=} \frac{3 x^{2}+6 x h+3 h^{2}-3 x^{2}}{h} \\
& =\frac{6 x h+3 h^{2}}{h} \stackrel{6 C F}{=} \frac{h(6 x+3 h)}{h} \stackrel{f(n)}{=} 6 x+3 h
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) Rationalize the numerator (remember to simplify): } \frac{\sqrt{x+h}-\sqrt{x}}{h}
\end{aligned}
$$

We begin: (c) Simplify: $\frac{2}{x^{2}+x}-\frac{3}{\sqrt{x}}$ LCD of $\frac{2}{x(x+1)}, \frac{3}{\sqrt{x}}, \frac{1}{x}$ is $x \sqrt{x}(x+1)$
two terms.

$$
\frac{\frac{2}{x^{2}+x}-\frac{3}{\sqrt{x}}}{\sqrt{x}+\frac{1}{x}} \cdot \frac{x \sqrt{x}(x+1)}{x \sqrt{x}(x+1)} \frac{\sqrt{x}+\frac{1}{x}}{\text { floc } 1} \frac{\left(\frac{2}{x(x+1)}-\frac{3}{\sqrt{x}}\right) x \sqrt{x}(x+1)}{\left(\sqrt{x}+\frac{1}{x}\right) \times \sqrt{x}(x+1)}
$$

distributive $\frac{\frac{2}{x(x+1)} \times x \sqrt{x}(x+1)-\frac{3}{\sqrt{x}} \times \sqrt{x}(x+1)}{x(\sqrt{x})^{2}(x+1)+\frac{1}{x} \times \sqrt{x}(x+1)}$

$$
\begin{aligned}
\text { fraction law }=\frac{2 \sqrt{x}-3 x(x+1)}{x^{2}(x+1)+\sqrt{x}(x+1)} \\
2 \sqrt{x}-3 y^{2}
\end{aligned} \quad \Rightarrow x^{\frac{1}{2}} \cdot(x+1)=x^{\frac{1}{2}} \cdot x+x^{\frac{1}{2}}, ~=x^{\frac{3}{2}}+x^{\frac{1}{2}}
$$

$$
=\left\lvert\, \begin{array}{|l|l}
\hline 2 \sqrt{x}-3 x^{2}-3 x \\
x^{3}+x^{2}+\sqrt{x^{3}}+\sqrt{x} \\
& =\sqrt{x^{3}} \\
\hline \text { ow cold have also }
\end{array}\right.
$$

(d) Expand: $\left(x^{3}+6\right)(2 x+1)-\left(x^{2}+x-2\right)\left(3 x^{2}\right)$
\rightarrow Convert to terms, no parenthesis. factored out $x^{\frac{1}{2}}$ from numerator and denominator, then cancelled.

$$
\downarrow \text { you must pass the Vertical Lime Test. }
$$

5. Draw the graph of a function which satisfies the following:
(a) $f(0)=1$
(b) $f(2)=1$
(c) $\lim _{x \rightarrow 0} f(x)=1$
(d) $\lim _{x \rightarrow 2^{-}} f(x)=0$
(e) $\lim _{x \rightarrow 2^{+}} f(x)=2$
(f) $\lim _{x \rightarrow-2} f(x)=-\infty$

6. Consider this limit:

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h}
$$

(a) Try using Limit Laws to find the limit. What ends up happening?

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h} \underset{(1)(2)}{(5)}=\frac{\frac{\lim _{h \rightarrow 0} 1}{\lim _{h \rightarrow 0} 3+\lim _{h \rightarrow 0} h}-\lim _{h \rightarrow 0}\left(\frac{1}{3}\right)}{\lim _{h \rightarrow 0} h} \\
& \operatorname{liment}_{(7),(8)}=\frac{\frac{1}{3+0}-\frac{1}{3}}{0}
\end{aligned}
$$

(b) Now find the actual limit.

The $\lim _{h \rightarrow 0}$ says youre looking to creak a global factor of $h-0=h$ in the numumter. So, simplify the compand fraction.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\frac{1}{(3+h)}-\frac{1}{3}}{h}=\lim _{h \rightarrow 0} \frac{\frac{3}{3(3+h)}-\frac{1}{3} \cdot \frac{3+h}{3+h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3}{3(3+h)}-\frac{3+h}{3(3+h)}}{h} \text { froe law } \mathbb{C} \\
& =\lim _{h \rightarrow 0} \frac{\frac{3-(3+h)}{3(3+h)}}{h} \quad \text { fro law (3) } \\
& -\lim _{h \rightarrow 0} \frac{\frac{3-3-h}{3(3+h)}}{h} \quad \text { dist law } \\
& =\lim _{h \rightarrow 0} \frac{\frac{-h}{3(3+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{3(3+h)} \cdot \frac{1}{h} \quad \text { frozen } 1 \text { an (2) } \\
& =\lim _{h \rightarrow 0} \frac{-h}{3 \cdot h \cdot(3+h)} \quad \text { oc low (5) } \\
& =\lim _{n \rightarrow 0} \frac{-1}{3(3+h)} \quad \text { now use limit laws } \\
& =\frac{-1}{3(3+0)} \\
& =-\frac{1}{9}
\end{aligned}
$$

7. Use the mathematical definition of continuity to prove the function

$$
f(x)= \begin{cases}x(x-1) & x<1 \\ 0 & x=1 \\ \sqrt{x-1} & x>1\end{cases}
$$

is continuous at the number $x=1$.
(1) Show $\lim _{x \rightarrow 1} f(x)$ exists.
we have:

$$
\begin{aligned}
\therefore \lim _{x \rightarrow 1^{+}} f(x)-\lim _{x \rightarrow 1^{+}} \sqrt{x-1} & =\sqrt{\lim _{x \rightarrow 1^{+}} x-\lim _{x \rightarrow 1^{+}} 1}=\sqrt{1-1}=0 \\
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}[x(x-1)]= & {\left[\lim _{x \rightarrow 1^{-}} x\right]\left[\lim _{x \rightarrow 1^{-}} x-\lim _{x \rightarrow 1^{-}} 1\right] } \\
\operatorname{limit}= & 1 \cdot(1-1) \\
& =0
\end{aligned}
$$

Since $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)$, we conclude $\lim _{x \rightarrow 1} f(x)$ exists and is equal to 0 .
(2) Show $f(1)$ is defined.

$$
f(1)=0
$$

(3) Show $\lim _{x \rightarrow 1} f(x)=f(1)$
from parts (1) and (2), $\lim _{x \rightarrow 1} f(x)=0$ and $f(1)=0$.
\therefore this condition is satisfied.

By the definition of continuity $f(x)$ is continuous at $x=1$.

